

FEBRUARY 2, 2018

SARAMA RESOURCES ESTABLISHES NEW 100% OWNED 600KM² EXPLORATION POSITION AT ITS KOUMANDARA PROJECT IN BURKINA FASO

VANCOUVER, CANADA. Sarama Resources Ltd. ("Sarama" or the "Company") (TSX-V:SWA) is pleased to announce that it has established a new and significant exploration position at its 100% owned⁽⁵⁾ Koumandara Project (the "Project") in south-west Burkina Faso (refer Figure 1).

The new 602km² land positon, located in the Banfora Greenstone Belt (refer Figure 2), was assembled by Sarama entering into agreements to acquire 4 mineral properties which complement Sarama's recently granted Nya-Nou exploration permit.

Sarama considers the Banfora Belt to be highly prospective for gold, yet relatively underexplored. Reviews of historical work conducted by Sarama and previous operators within the Project area indicate regionally extensive gold occurrences. These kilometre-scale trends are marked by drilling, large-scale artisanal mining centres and extensive gold-in-soil anomalism along corridors that coincide with a district-scale litho-structural 'break' interpreted as a regional-scale shear zone. A number of the geological characteristics identified by Sarama are seen in the neighbouring Houndé Belt and are considered important for the formation of economic gold deposits.

Highlights

- 602km² semi-contiguous project area in the Banfora Belt in south-west Burkina Faso.
- Sarama's interests will be **100%**, upon the closing of transactions⁽⁵⁾.
- Project area overlies a 45km-long section of a district-scale litho-structural break ("Banfora East Shear Zone") which Sarama considers significant in terms of gold emplacement.
- Gold-in-soil anomalism extending over 43km-long x 10km-wide corridor, with approximately 25km untested by historical geochemical surveys.
- The Banfora Greenstone Belt extends from central Côte d'Ivoire where it hosts Perseus Mining's large Yaoure mine development project.
- Banfora East Shear Zone resembles the Boni Shear Zone of the Houndé Belt which is spatially associated with several significant high-grade gold deposits/projects including Yaramoko, Siou, Bondi and Golden Hill.
- Exploration is targeting multiple styles of mineralisation, but predominantly large, free-milling, gold-quartz systems that are known to be present in Burkina Faso.
- Historical reconnaissance reverse-circulation ("RC") and aircore ("AC") drilling returned significant intersections including:
 - o 7m @ 6.86 g/t Au from 53m in BF 18 (RC, 100% Fresh);
 - o 13m @ 2.87 g/t Au from 10m in BF 08 (RC, 25% Trans / 75% Fresh);
 - o 4m @ 10.59 g/t Au from 30m in BF 08 (RC, 100% Oxide);
 - 3m @ 8.94 g/t Au from 105m in FRC802 (RC, 100% Fresh); and
 - 15m @ 1.80 g/t Au from 85m in FRC799 (RC, 100% Fresh).
- High tenor auger and gold-in-soil results have been returned in historical work programs.
- Sarama has commenced reconnaissance work and data compilation.

Sarama's President and CEO, Andrew Dinning, commented:

"The project has taken some time to pull together and we look forward to applying our extensive knowledge of the geology in Burkina Faso and what we have learned in the more established Hounde Belt where our team made a multimillion ounce discovery in a purely greenfields area.

This is a large 100%⁽⁵⁾ owned position situated in a prospective, yet underexplored gold belt. We are very encouraged by regionally extensive gold-in-soil anomalism and also by the tenor of a number of the reconnaissance auger and RC drilling results. We are looking forward to generating our first round of targets and rapidly moving the project forward."

Geological Setting and Historical Work

The Project is located in the north of the Banfora Belt, a regionally extensive belt of Birimian-aged rocks which, elsewhere, are known to host multi-million ounce gold deposits. The properties are generally positioned over the central and eastern portions of the belt and overlie a package of lithologically diverse rocks including meta-sedimentary, volcanic and intrusive rock units of varying composition.

A district-scale, north-east trending litho-structural feature ("Banfora East Shear Zone") that lies close to the eastern margin of the Banfora Belt transects several of the properties, giving the Project exposure to a structurally disrupted corridor extending for approximately 45km along strike.

Historical soil geochemistry surveys on broad-spaced grids indicate elevated gold-in-soil anomalism along three main trends⁽⁶⁾ within the Project. Peak values of **10.0g/t Au** (mean of 5.9ppb Au) and **2.6g/t Au** (mean of 10.3ppb Au) were returned for auger and manually collected soil surveys respectively.

The central trend extends for over 30km in strike and is coincident with fault-bounded sedimentary and mafic volcanic rocks units. The spatially-associated Banfora East Shear Zone further enhances the geological environment and increases the potential for large-scale fluid mobility and gold deposition.

The western anomalous trend extends for over 40km and is spatially associated with the contact zone of a granodioritic intrusion with sedimentary rocks in the outboard Banfora Basin. Detailed auger sampling surveys have delineated a third north-easterly-striking trend extending for approximately 30km along strike in the east.

Reconnaissance drilling by various operators to test anomalous gold-in-soil zones (refer Appendix A) has returned the following significant results:

- Nya-Nou Property (significant Intersections ≥10gram.m/t⁽⁷⁾ from 4400m RAB, 6600m AC, 4800m RC)
 - o 7m @ 6.86 g/t Au from 53m in BF 18 (RC, 100% Fresh)
 - o 13m @ 2.87 g/t Au from 10m in BF_08 (RC, 25% Trans / 75% Fresh);
 - 4m @ 10.59 g/t Au from 30m in BF_08 (RC, 100% Oxide);
 - o 3m @ 8.94 g/t Au from 105m in FRC802 (RC, 100% Fresh);
 - o 15m @ 1.80 g/t Au from 85m in FRC799 (RC, 100% Fresh);
 - o 17m @ 1.18 g/t Au from 12m in BF_06 (RC, 6% Oxide / 94% Trans);
 - o 2m @ 8.94 g/t Au from 20m in AC1032 (AC, 100% Oxide);
 - o 4m @ 2.94 g/t Au from 90m in FRC801 (RC, 100% Fresh);
 - o 7m @ 1.66 g/t Au from 19m in FRC799 (RC, 100% Oxide);
 - o 20m @ 0.60 g/t Au from 12m in AC995 (AC, 100% Oxide); and
 - o 4m @ 2.86 g/t Au from 9m in BF 03 (RC, 100% Trans).
- Kapoguan, Kongoroba & Noumousso Properties (significant intersections ≥5gram.m/t⁽⁷⁾ from 11600m RC, 200m DDH)
 - o 3m @ 4.37g/t Au from 39m in BRC15-042 (RC, material type unknown); and
 - 3m @ 1.73g/t Au from 68m in BRC15-047 (RC, material type unknown).

Much of the Banfora East Shear Zone lacks coverage by base-level, detailed soil geochemistry surveys, and significant areas of the anomalous gold-in-soil trends identified remain untested by reconnaissance drilling. Sarama believes the Project contains several important geological features, the prospectivities of which are enhanced by encouraging results from historical exploration activities. Fieldwork will focus on gaps in the base-level data, in conjunction with ongoing compilation and verification of historical data and desktop targeting.

Sarama is encouraged that its new litho-structural interpretation for the eastern margin of the Banfora Belt, and the recognition that the Banfora East Shear Zone is intimately associated with a corridor of gold-soil anomalism, will lead to the discovery of a new gold belt and new gold discoveries. Sarama is well placed to consolidate its position and build its geological understanding of the region.

Commercial Terms of Transactions

A binding agreement in respect of the Dabokuy Property ("Dabokuy") was entered into with Semafo Inc ("Semafo") on January 31, 2018 (the "Dabokuy Agreement"). The Dabokuy Agreement, subject to novation of a historical agreement, permit transfers and payment of certain government fees and taxes by Sarama, provides for Sarama to acquire a 100% interest in Dabokuy. Semafo will retain a net smelter return royalty of 1.5% in respect of gold produced from Dabokuy in excess of 100koz Au and will have a one-off right to elect to purchase back an interest up to a maximum of 20% in Dabokuy (the "Back-In Right"). In the event Semafo elects to exercise its Back-In Right, Semafo will make a cash payment to Sarama equal to 3 times the exploration expenditures incurred by Sarama on Dabokuy on a pro-rata basis. Semafo's Back-In Right will expire the earlier of: (i) 90 days following the filing of a technical report by Sarama that details combined measured and indicated mineral resources on Dabokuy greater than 1Moz Au; and (ii) 45 days after the declaration by Sarama of its intention to commence commercial mining operations at Dabokuy. In the event that Semafo elects to exercise its Back-In Right, Semafo's right to a net smelter return royalty will be extinguished.

Binding agreements in respect of the Noumousso, Kapoguan and Kongoroba Properties were entered into with two Burkina Faso-based parties on December 15, 2018. The agreements are structured as option agreements and give Sarama the right to acquire a 100% interest in each of the 3 properties subject to Sarama making certain cash instalment payments at various time-based milestones. In the event that Sarama makes these instalments in full, the respective underlying exploration permits will be transferred to Sarama and the respective vendors will receive a net smelter return royalty of 1% in respect of gold production from the properties. Sarama has a right to buy out any or all of the royalties in full by making cash payments of US\$1M for each of the royalties.

For further information on the Company's activities, please contact:

Andrew Dinning or Paul Schmiede e: info@saramaresources.com

t: +61 (0) 8 9363 7600

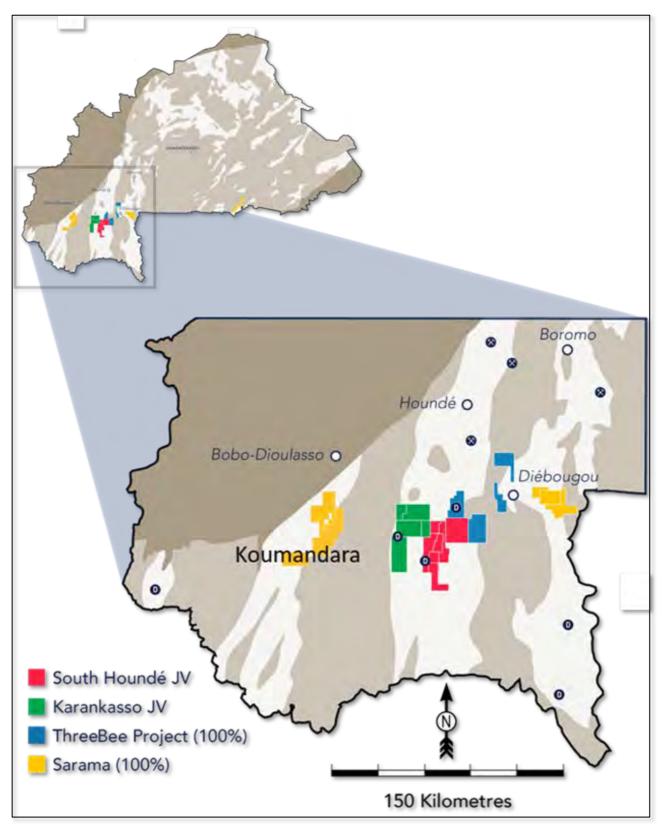


Figure 1 – Koumandara Project Location

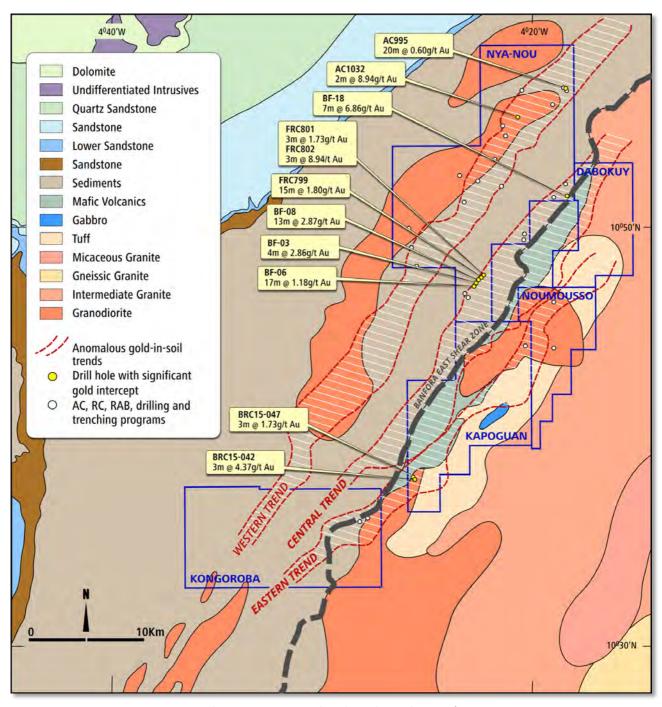


Figure 2 – Koumandara Project - Regional Geology Plan and Sarama's Project Position

ABOUT SARAMA RESOURCES LTD

Sarama Resources Ltd (TSX-V: SWA) is a West African focused gold explorer with substantial landholdings in Burkina Faso. Sarama is focused on consolidating under-explored landholdings in Burkina Faso and other established mining jurisdictions.

Sarama's flagship properties are situated within the Company's South Houndé Project area in south-west Burkina Faso. Located within the prolific Houndé Greenstone Belt, Sarama's exploration programs have built on significant early success to deliver an inferred mineral resource estimate of 2.1 Moz gold⁽²⁾. Acacia Mining plc is earning up to a 70% interest in the South Houndé Project by satisfying certain conditions, including funding earn-in expenditures of up to US\$14 million, over a 4-year earn-in period and may acquire an additional 5% interest, for an aggregate 75% interest in the Project, upon declaration of a minimum mineral reserve of 1.6 million ounces of gold. Acacia has satisfied certain milestones and currently holds a 50% interest in the South Houndé Project and is continuing to sole fund exploration activities.

Sarama holds a 31% participating interest in the Karankasso Project Joint Venture ("**JV**") which is situated adjacent to the Company's South Houndé Project in Burkina Faso and is a JV between Sarama and Savary Gold Corp. ("**Savary**"). Savary is the operator of the JV and in October 2015, declared a maiden inferred mineral resource estimate of 671,000 ounces of contained gold⁽³⁾ at the Karankasso Project JV.

Sarama also has a 100% interest in the Bondi Deposit which has a historical estimate of mineral resources of 0.3Moz Au (measured and indicated) and 0.1Moz Au (inferred)⁽¹⁾.

Together, the South Houndé Project, Bondi Deposit and the Karankasso Project form a cluster of advanced gold deposits, within trucking distance of one another, which potentially offers a development option for a multi-source fed central processing facility in the southern Houndé Belt region of Burkina Faso.

Sarama had recently established a new 600km² exploration position in the highly prospective Banfora Belt in south-western Burkina Faso. The Koumandara Project hosts several regional-scale structural features and trends of gold-in-soil anomalism extending for over 40km along strike.

Incorporated in 2010, the Company's Board and management team have a proven track record in Africa and a strong history in the discovery and development of large-scale gold deposits. Sarama is well positioned to build on its current success with a sound exploration strategy across its property portfolio.

FOOTNOTES

- 1. Bondi Deposit 4.1Mt @ 2.1g/t Au for 282,000 oz Au (measured and indicated) and 2.5Mt @ 1.8g/t Au for 149,700 oz Au (inferred), reported at a 0.5 g/t Au cut-off.
 - i. The historical estimate of the Bondi Deposit reflects a mineral resource estimate compiled by Orezone Gold Corporation ("Orezone") which has an effective date of February 20, 2009. The historical estimate is contained in a technical report titled "Technical Report on the Mineral Resource of the Bondigui Gold Project", dated date of February 20, 2009 (the "Bondi Technical Report") and is available under the profile of Orezone on SEDAR at www.sedar.com.
 - ii. Sarama believes that the historical estimate is relevant to investors' understanding of the property, as it reflects the most recent technical work undertaken in respect of the Bondi Deposit.
 - iii. The historical estimate was informed by 886 drillholes, assayed for gold by cyanidation methods, were used to interpret mineralised envelopes and geological zones over the area of the historical estimate. Gold grade interpolation was undertaken using ID² methodology based on input parameters derived from geostatistical and geological analyses assessments. Field measurements and geological logging of drillholes were used to determine weathering boundaries and bulk densities for modelled blocks.
 - iv. The historical estimate uses the mineral resource reporting categories required under National Instrument 43-101.
 - v. No more recent estimates of the mineral resource or other data are available.
 - vi. Sarama is currently undertaking the necessary verification work in the field and on the desktop that may support the future reclassification of the historical estimate to a mineral resource.
 - vii. A qualified person engaged by Sarama has not undertaken sufficient work to verify the historical estimate as a current mineral resource and Sarama is therefore not treating the historical estimate as a current mineral resource.

- 2. South Houndé Project 43.0 Mt @ 1.5 g/t Au (reported above cut-off grades ranging 0.3-2.2 g/t Au, reflecting the mining methods and processing flowsheets assumed to assess the likelihood of the inferred mineral resources having reasonable prospects for eventual economic extraction). The effective date of the Company's inferred mineral resource estimate is February 4, 2016. For further information regarding the mineral resource estimate please refer to the technical report titled "NI 43-101 Independent Technical Report South Houndé Project Update, Bougouriba and Ioba Provinces, Burkina Faso", dated March 31, 2016. The technical report is available under Sarama Resources Ltd.'s profile on SEDAR at www.sedar.com.
- 3. Karankasso Project 9.2 Mt @ 2.3 g/t Au (at a 0.5 g/t Au cut-off). The effective date of the Karankasso Project JV mineral resource estimate is October 7, 2015. For further information regarding the mineral resource estimate please refer to the technical report titled "Technical Report and Resource Estimate on the Karankasso Project, Burkina Faso", dated October 7, 2015. The technical report is available under Savary Gold Corp's profile on SEDAR at www.sedar.com. Sarama has not independently verified Savary's mineral resource estimate and takes no responsibility for its accuracy. Savary is the operator of the Karankasso Project JV and Sarama is relying on their Qualified Persons' assurance of the validity of the mineral resource estimate.
- 4. Sarama has, or is entitled to have a 100% interest in the Djarkadougou, Botoro, Bamako and Bouni Properties which comprise the ThreeBee Project.
- 5. Refer to Section of this News Release 'Commercial Terms of Transactions'.
- 6. Western Trend broadly defined by +5ppb Au (66th percentile of survey population) gold-in-soil anomalism samples collected manually. Central Trend broadly defined by a combination of +17ppb Au (90th percentile of survey population) for manually collected samples and +18ppb Au (95th percentile of survey population) for auger drilled samples. Eastern Trend broadly defined by a combination of +50ppb Au for auger drilled samples and +12ppb Au for manually collected samples.
- 7. Measurement unit of gram.m/t refers to intersection grade in grams/tonne multiplied by intersection length.

CAUTION REGARDING FORWARD LOOKING STATEMENTS

Information in this news release that is not a statement of historical fact constitutes forward-looking information. Such forward-looking information includes statements regarding the Company's plans for further exploration at the Koumandara Project, the potential for mineralization of significance to be discovered at the Koumandara Project, the ability of the Company to secure the issuance of the necessary exploration permits from the Government of Burkina Faso, the Earn-In Agreement with Acacia, including the amounts that may be spent on exploration and interests in the South Houndé Project that may be earned by Acacia upon making certain expenditures and estimating a minimum reserve and future exploration plans. There has been insufficient exploration conducted to define a mineral resource on these properties and there can be no assurance that further exploration will delineate a mineral resource.

Actual results, performance or achievements of the Company may vary from the results suggested by such forward-looking statements due to known and unknown risks, uncertainties and other factors. Such factors include, among others, that the business of exploration for gold and other precious minerals involves a high degree of risk and is highly speculative in nature; Mineral Resources are not Mineral Reserves, they do not have demonstrated economic viability, and there is no certainty that they can be upgraded to Mineral Reserves through continued exploration; few properties that are explored are ultimately developed into producing mines; geological factors; the actual results of current and future exploration; changes in project parameters as plans continue to be evaluated, as well as those factors disclosed in the Company's publicly filed documents. There can be no assurance that any mineralisation that is discovered will be proven to be economic, or that future required regulatory licensing or approvals will be obtained. However, the Company believes that the assumptions and expectations reflected in the forward-looking information are reasonable. Assumptions have been made regarding, among other things, Acacia's continued funding of exploration activities, the Company's ability to carry on its exploration activities, the sufficiency of funding, the timely receipt of required approvals, the price of gold and other precious metals, that the Company will not be affected by adverse political events, the ability of the Company to operate in a safe, efficient and effective manner and the ability of the Company to obtain further financing as and when required and on reasonable terms. Readers should not place undue reliance on forward-looking information.

Sarama does not undertake to update any forward-looking information, except as required by applicable laws.

Neither TSX Venture Exchange nor its Regulation Services Provider (as that term is defined in policies of the TSX Venture Exchange) accepts responsibility for the adequacy or accuracy of this release.

NOTES -DRILLING

Drilling results are quoted as downhole intersections. True widths and orientation of mineralisation intersected by the drilling are not yet well understood.

The reported composites for the drilling were determined using a cut-off grade of 0.30g/t Au to select significant and anomalous intersections, with a maximum of 2m internal dilution being incorporated into the composite where appropriate. No top-cuts were applied to assay grades. Isolated mineralised intersections less than 2m in length have not been reported.

Gold assays for the drilling on the Nya-Nou Property were undertaken by the ALS and SGS laboratories in Ouagadougou, Burkina Faso and the SGS laboratory in Morila, Mali. Assays are determined by fire assay methods using a 50 gram charge, lead collection and an AAS finish with lower detection limits of 0.01a/t Au.

The drilling was generally designed according to program aims, expected mineralization orientation and was of variable length. Holes were spaced at various intervals according to targeting intent.

Aircore and RC holes on the Nya-Nou Property were logged and sampled at regular 1m downhole intervals, with assays for AC holes conduced on 2m composites. Logging interval information for RAB drilling on the Nya-Nou Property is not available, however assaying was conducted on 4m downhole composites. RC drilling on the Noumousso, Kapoguan and Kongoroba Properties was logged and sampled at regular 1m downhole intervals.

Intersection oxidation state classification is based on visual logging of the drillholes.

Drilling and geological sampling and assaying undertaken by Sarama on the Nya-Nou Property is conducted in accordance with its quality assurance/quality control program which includes the use of certified reference materials as well as field duplicates. For further information regarding the Company's QAQC protocols please refer to the technical report titled "NI 43-101 Independent Technical Report, South Houndé Project Update, Bougouriba and Ioba Provinces, Burkina Faso", dated March 31, 2016. The technical report is available under the Company's profile on SEDAR at www.sedar.com.

Quality assurance/quality control programs used by previous operators on the Nya-Nou, Noumousso, Kapoguan and Kongoroba Properties are not known to Sarama and results have not been verified by Sarama.

QUALIFIED PERSONS' STATEMENT

Scientific or technical information in this news release that relates to the Company's exploration activities in Burkina Faso is based on information compiled or approved by Guy Scherrer. Guy Scherrer is an employee of Sarama Resources Ltd and is a member in good standing of the Ordre des Géologues du Québec and has sufficient experience which is relevant to the commodity, style of mineralisation under consideration and activity which he is undertaking to qualify as a Qualified Person under National Instrument 43-101. Guy Scherrer consents to the inclusion in this report of the information, in the form and context in which it appears.

Scientific or technical information in this news release that relates to the preparation of the South Houndé Project's mineral resource estimate is based on information compiled or approved by Adrian Shepherd. Adrian Shepherd is an employee of Cube Consulting Pty Ltd and is considered to be independent of Sarama Resources Ltd. Adrian Shepherd is a Chartered Professional Member in good standing of the Australasian Institute of Mining and Metallurgy and has sufficient experience which is relevant to the commodity, style of mineralisation under consideration and activity which he is undertaking to qualify as a Qualified Person under National Instrument 43-101. Adrian Shepherd consents to the inclusion in this news release of the information, in the form and context in which it appears.

Scientific or technical information in this news release, in respect of the Bondi Deposit relating to mineral resource and exploration information drawn from the Technical Report prepared for Orezone on that deposit has been approved by Guy Scherrer. Guy Scherrer is an employee of Sarama Resources Ltd and is a member in good standing of the Ordre des Géologues du Québec and has sufficient experience which is relevant to the commodity, style of mineralisation under consideration and activity which he is undertaking to qualify as a Qualified Person under National Instrument 43-101. Guy Scherrer consents to the inclusion in this report of the information, in the form and context in which it appears.

Scientific or technical information in this news release that relates to the preparation of the Karankasso Project's mineral resource estimate is based on information compiled or approved by Eugene Puritch and Antoine Yassa. Eugene Puritch and Antoine Yassa are employees of P&E Mining Consultants Inc. and are considered to be independent of Savary Gold Corp. and Sarama Resources Ltd. Antoine Yassa is a member in good standing of the Ordre des Géologues du Québec and Eugene Puritch is a member in good standing of Professional Engineers Ontario. Eugene Puritch and Antoine Yassa have sufficient experience which is relevant to the commodity, style of mineralisation under consideration and activity which they are undertaking to qualify as a Qualified Person under National Instrument 43-101. Eugene Puritch and Antoine Yassa consent to the inclusion in this news release of the information, in the form and context in which it appears. Sarama has not independently verified the mineral resource estimate for the Karnakasso Project using a Qualified Person because Savary is the operator of the Karankasso Project JV and Sarama is relying on their Qualified Persons' assurance of the validity of the mineral resource estimate compiled by Savary.

APPENDIX A – LISTING OF HISTORICAL DRILLING – KOUMANDARA PROJECT

Location (Property)	Hole ID	Hole Type	Downhole Intersection	Intersection Material Type	Depth From (m)	Depth To (m)	Dip (°)	Azimuth (°)	Hole Length (m)
NYA-NOU	AC1000	AC	no significant intersections		0	50	-55	320	50
NYA-NOU	AC1001	AC	no significant intersections		0	50	-55	320	50
NYA-NOU	AC1002	AC	2m @ 0.83 g/t Au	100% Oxide	34	36	-55	320	50
		AC	2m @ 0.50 g/t Au	100% Oxide	40	42			
		AC	2m @ 0.38 g/t Au	100% Oxide	46	48			
NYA-NOU	AC1003	AC	2m @ 0.33 g/t Au	100% Oxide	12	14	-55	320	50
		AC	4m @ 0.39 g/t Au	100% Oxide	30	34			
		AC	2m @ 0.89 g/t Au	100% Oxide	42	44			
NYA-NOU	AC1004	AC	6m @ 0.39 g/t Au	100% Oxide	8	14	-55	320	50
NYA-NOU	AC1005	AC	2m @ 0.52 g/t Au	100% Oxide	38	40	-55	320	50
NYA-NOU	AC1006	AC	2m @ 0.38 g/t Au	100% Oxide	44	46	-55	320	50
NYA-NOU	AC1007	AC	2m @ 0.58 g/t Au	100% Oxide	20	22	-55	320	50
NYA-NOU	AC1008	AC	2m @ 0.68 g/t Au	100% Oxide	18	20	-55	320	50
		AC	2m @ 0.88 g/t Au	100% Oxide	46	48			
NYA-NOU	AC1009	AC	2m @ 1.93 g/t Au	100% Oxide	34	36	-55	320	50
NYA-NOU	AC1010	AC	2m @ 0.46 g/t Au	100% Oxide	22	24	-55	320	50
		AC	2m @ 0.30 g/t Au	100% Oxide	28	30			
NYA-NOU	AC1011	AC	2m @ 0.32 g/t Au	100% Oxide	12	14	-55	320	50
NYA-NOU	AC1012	AC	2m @ 0.49 g/t Au	100% Oxide	2	4	-55	320	50
		AC	4m @ 0.67 g/t Au	100% Oxide	38	42			
NYA-NOU	AC1013	AC	2m @ 0.39 g/t Au	100% Oxide	36	38	-55	320	50
NYA-NOU	AC1014	AC	2m @ 1.64 g/t Au	100% Oxide	28	30	-55	320	50
NYA-NOU	AC1015	AC	2m @ 0.53 g/t Au	100% Oxide	10	12	-55	320	35
		AC	4m @ 0.39 g/t Au	100% Oxide	28	32			
NYA-NOU	AC1016	AC	no significant intersections		0	19	-55	320	19
NYA-NOU	AC1017	AC	no significant intersections		0	47	-55	320	47
NYA-NOU	AC1018	AC	2m @ 0.35 g/t Au	100% Oxide	26	28	-55	320	50
NYA-NOU	AC1019	AC	2m @ 1.52 g/t Au	100% Oxide	30	32	-55	320	50
NYA-NOU	AC1020	AC	no significant intersections		0	41	-55	320	41
NYA-NOU	AC1021	AC	no significant intersections		0	48	-55	320	48
NYA-NOU	AC1022	AC	no significant intersections		0	50	-55	320	50
NYA-NOU	AC1023	AC	no significant intersections		0	45	-55	320	45
NYA-NOU	AC1024	AC	no significant intersections		0	50	-55	320	50
NYA-NOU	AC1025	AC	no significant intersections		0	45	-55	320	45
NYA-NOU	AC1026	AC	no significant intersections		0	50	-55	320	50
NYA-NOU	AC1027	AC	2m @ 0.38 g/t Au	100% Oxide	32	34	-55	320	50
NYA-NOU	AC1028	AC	no significant intersections		0	33	-55	320	33
NYA-NOU	AC1029	AC	no significant intersections		0	50	-55	320	50
NYA-NOU	AC1030	AC	no significant intersections		0	50	-55	320	50
NYA-NOU	AC1031	AC	no significant intersections		0	26	-55	320	26
NYA-NOU	AC1032	AC	2m @ 8.94 g/t Au	100% Oxide	20	22	-55	320	50
			4m @ 0.80 g/t Au	100% Oxide	32	36			
NYA-NOU	AC1033	AC	no significant intersections		0	50	-55	320	50
NYA-NOU	AC1034	AC	no significant intersections		0	50	-55	320	50
NYA-NOU	AC1035	AC	no significant intersections		0	30	-55	320	30
NYA-NOU	AC1036	AC	no significant intersections		0	50	-55	320	50
NYA-NOU	AC1037	AC	no significant intersections		0	50	-55	320	50
NYA-NOU	AC1038	AC	no significant intersections		0	50	-55	320	50
			3		-				

Location (Property)	Hole ID	Hole Type	Downhole Intersection	Intersection Material Type	Depth From (m)	Depth To (m)	Dip (°)	Azimuth (°)	Hole Length (m)
NYA-NOU	AC1040	AC	no significant intersections		0	48	-55	320	48
NYA-NOU	AC1041	AC	no significant intersections		0	50	-55	320	50
NYA-NOU	AC1042	AC	no significant intersections		0	50	-55	320	50
NYA-NOU	AC1043	AC	no significant intersections		0	50	-55	320	50
NYA-NOU	AC1044	AC	no significant intersections		0	40	-55	320	40
NYA-NOU	AC1045	AC	no significant intersections		0	50	-55	320	50
NYA-NOU	AC1046	AC	no significant intersections		0	50	-55	320	50
NYA-NOU	AC1047	AC	2m @ 0.35 g/t Au	100% Oxide	20	22	-55	320	50
NYA-NOU	AC1048	AC	no significant intersections		0	50	-55	320	50
NYA-NOU	AC1049	AC	no significant intersections		0	49	-55	320	49
NYA-NOU	AC1050	AC	no significant intersections		0	50	-55	320	50
NYA-NOU	AC1051	AC	no significant intersections		0	50	-55	320	50
NYA-NOU	AC1052	AC	no significant intersections		0	20	-55	320	20
NYA-NOU	AC1053	AC	no significant intersections		0	11	-55	320	11
NYA-NOU	AC1054	AC	no significant intersections		0	20	-55	320	20
NYA-NOU	AC1055	AC	no significant intersections		0	14	-55	320	14
NYA-NOU	AC1055	AC	no significant intersections		0	15	-55	320	15
NYA-NOU	AC1050 AC1057	AC	no significant intersections		0	10	-55	320	10
NYA-NOU	AC1057 AC1058	AC	no significant intersections		0	7	-55	320	7
NYA-NOU	AC1058 AC1059	AC	no significant intersections		0	, 17	-55	320	17
NYA-NOU	AC1059 AC1060	AC	no significant intersections		0	19	-55 -55	320	19
NYA-NOU			-		0				22
	AC1061	AC	no significant intersections		0	22	-55 -5	320	20
NYA-NOU	AC1062	AC	no significant intersections		0	20	-55 -5	320	20 17
NYA-NOU	AC1063	AC	no significant intersections		0	17	-55 -5	320	50
NYA-NOU	AC1064	AC	no significant intersections			50	-55	320	
NYA-NOU	AC1065	AC	no significant intersections		0	38	-55	320	38
NYA-NOU	AC1066	AC	no significant intersections		0	40	-55	320	40
NYA-NOU	AC1067	AC	no significant intersections		0	38	-55	320	38
NYA-NOU	AC1068	AC	no significant intersections		0	41	-55	320	41
NYA-NOU	AC1069	AC	no significant intersections		0	40	-55	320	40
NYA-NOU	AC1070	AC	no significant intersections		0	36	-55	320	36
NYA-NOU	AC1071	AC	no significant intersections		0	29	-55	320	29
NYA-NOU	AC1072	AC	no significant intersections		0	35	-55	320	35
NYA-NOU	AC1073	AC	no significant intersections		0	33	-55	320	33
NYA-NOU	AC1074	AC	no significant intersections		0	33	-55	320	33
NYA-NOU	AC1075	AC	no significant intersections		0	30	-55	320	30
NYA-NOU	AC1076	AC	2m @ 0.95 g/t Au	100% Oxide	0	2	-55	320	48
			2m @ 3.84 g/t Au	100% Oxide	46	48			
NYA-NOU	AC1077	AC	2m @ 0.35 g/t Au	100% Oxide	6	8	-55	320	44
			2m @ 0.67 g/t Au	100% Oxide	30	32			
			2m @ 1.19 g/t Au	100% Oxide	36	38			
NYA-NOU	AC1078	AC	no significant intersections		0	47	-55	320	47
NYA-NOU	AC1079	AC	no significant intersections		0	26	-55	320	26
NYA-NOU	AC1080	AC	4m @ 0.63 g/t Au	100% Oxide	2	6	-55	320	38
			4m @ 0.60 g/t Au	100% Oxide	10	14			
NYA-NOU	AC1081	AC	no significant intersections		0	39	-55	320	39
NYA-NOU	AC1082	AC	no significant intersections		0	36	-55	320	36
NYA-NOU	AC1083	AC	2m @ 0.54 g/t Au	100% Oxide	0	2	-55	320	28
NYA-NOU	AC1084	AC	no significant intersections		0	24	-55	320	24
NYA-NOU	AC1085	AC	2m @ 2.14 g/t Au	100% Oxide	24	26	-55	320	33
NYA-NOU	AC1086	AC	2m @ 0.54 g/t Au	100% Oxide	12	14	-55	320	34

Location (Property)	Hole ID	Hole Type	Downhole Intersection	Intersection Material Type	Depth From (m)	Depth To (m)	Dip (°)	Azimuth (°)	Hole Length (m)
									_
NYA-NOU	AC1087	AC	no significant intersections		0	30	-55	320	30
NYA-NOU	AC1088	AC	no significant intersections		0	43	-55	320	43
NYA-NOU	AC1089	AC	no significant intersections		0	43	-55	320	43
NYA-NOU	AC1090	AC	no significant intersections		0	37	-55	320	37
NYA-NOU	AC1091	AC	no significant intersections		0	28	-55	320	28
NYA-NOU	AC1092	AC	no significant intersections		0	18	-55	320	18
NYA-NOU	AC1093	AC	no significant intersections		0	27	-55	320	27
NYA-NOU	AC1094	AC	no significant intersections		0	32	-55	320	32
NYA-NOU	AC1095	AC	2m @ 0.34 g/t Au	100% Oxide	0	2	-55	320	30
NYA-NOU	AC1096	AC	no significant intersections		0	39	-55	320	39
NYA-NOU	AC1097	AC	no significant intersections		0	36	-55	320	36
NYA-NOU	AC1098	AC	no significant intersections		0	31	-55	320	31
NYA-NOU	AC1099	AC	no significant intersections		0	42	-55	320	42
NYA-NOU	AC1100	AC	no significant intersections		0	42	-55	320	42
NYA-NOU	AC1101	AC	no significant intersections		0	39	-55	320	39
NYA-NOU	AC1102	AC	2m @ 0.59 g/t Au	100% Oxide	20	22	-55	320	42
NYA-NOU	AC1103	AC	no significant intersections		0	36	-55	320	36
NYA-NOU	AC1104	AC	2m @ 1.06 g/t Au	100% Oxide	34	36	-55	320	42
NYA-NOU	AC1105	AC	no significant intersections		0	50	-55	320	50
NYA-NOU	AC1106	AC	no significant intersections		0	45	-55	320	45
NYA-NOU	AC1107	AC	no significant intersections		0	39	-55	320	39
NYA-NOU	AC1108	AC	2m @ 0.39 g/t Au	100% Oxide	36	38	-55	320	39
NYA-NOU	AC1109	AC	no significant intersections		0	41	-55	320	41
NYA-NOU	AC1110	AC	no significant intersections		0	48	-55	320	48
NYA-NOU	AC1111	AC	no significant intersections		0	47	-55	320	47
NYA-NOU	AC1112	AC	no significant intersections		0	27	-55	320	27
NYA-NOU	AC1113	AC	no significant intersections		0	50	-55	320	50
NYA-NOU	AC1114	AC	no significant intersections		0	47	-55	320	47
NYA-NOU	AC1115	AC	no significant intersections		0	42	-55	320	42
NYA-NOU	AC1116	AC	no significant intersections		0	47	-55	320	47
NYA-NOU	AC1117	AC	2m @ 0.66 g/t Au	100% Oxide	0	2	-55	320	37
NYA-NOU	AC1118	AC	no significant intersections		0	50	-55	320	50
NYA-NOU	AC1119	AC	no significant intersections		0	50	-55	320	50
NYA-NOU	AC1120	AC	no significant intersections		0	42	-55	320	42
NYA-NOU	AC1121	AC	no significant intersections		0	41	-55	320	41
NYA-NOU	AC1122	AC	no significant intersections		0	39	-55	320	39
NYA-NOU	AC1123	AC	no significant intersections		0	39	-55	320	39
NYA-NOU	AC1124	AC	no significant intersections		0	41	-55	320	41
NYA-NOU	AC1125	AC	no significant intersections		0	47	-55	320	47
NYA-NOU	AC1126	AC	no significant intersections		0	44	-55	320	44
NYA-NOU	AC1127	AC	no significant intersections		0	34	-55	320	34
NYA-NOU	AC1128	AC	no significant intersections		0	10	-55	320	10
NYA-NOU	AC1129	AC	no significant intersections		0	33	-55	320	33
NYA-NOU	AC1130	AC	no significant intersections		0	30	-55	320	30
NYA-NOU	AC1131	AC	no significant intersections		0	48	-55	320	48
NYA-NOU	AC1132	AC	no significant intersections		0	48	-55	320	48
NYA-NOU	AC1133	AC	no significant intersections		0	50	-55	320	50
NYA-NOU	AC1134	AC	no significant intersections		0	50	-55	320	50
NYA-NOU	AC1135	AC	no significant intersections		0	46	-55	320	46
NYA-NOU	AC1136	AC	no significant intersections		0	40	-55	320	40
NYA-NOU	AC1137	AC	no significant intersections		0	49	-55	320	49
			=						

Location (Property)	Hole ID	Hole Type	Downhole Intersection	Intersection Material Type	Depth From (m)	Depth To (m)	Dip (°)	Azimuth (°)	Hole Length (m)
NYA-NOU	AC1138	AC	no significant intersections		0	50	-55	320	50
NYA-NOU	AC1139	AC	no significant intersections		0	48	-55	320	48
NYA-NOU	AC1140	AC	no significant intersections		0	48	-55	320	48
NYA-NOU	AC1141	AC	no significant intersections		0	50	-55	320	50
NYA-NOU	AC1142	AC	no significant intersections		0	27	-55	320	27
NYA-NOU	AC1143	AC	no significant intersections		0	32	-55	320	32
NYA-NOU	AC1144	AC	no significant intersections		0	50	-55	320	50
NYA-NOU	AC1145	AC	2m @ 1.81 g/t Au	100% Oxide	22	24	-55	320	50
NYA-NOU	AC1146	AC	no significant intersections		0	50	-55	320	50
NYA-NOU	AC1147	AC	no significant intersections		0	50	-55	320	50
NYA-NOU	AC1148	AC	no significant intersections		0	50	-55	320	50
NYA-NOU	AC1149	AC	no significant intersections		0	50	-55	320	50
NYA-NOU	AC1150	AC	no significant intersections		0	47	-55	320	47
NYA-NOU	AC990	AC	no significant intersections		0	50	-55	320	50
NYA-NOU	AC991	AC	no significant intersections		0	50	-55	320	50
NYA-NOU	AC992	AC	2m @ 0.53 g/t Au	100% Oxide	10	12	-55	320	50
NIA-NOO	ACJJZ	AC	2m @ 0.30 g/t Au	100% Oxide	20	22	-55	320	30
NYA-NOU	AC993	AC	10m @ 0.44 g/t Au	100% Oxide	4	14	-55	320	50
NYA-NOU	AC994	AC	2m @ 0.71 g/t Au	100% Oxide	8	10	-55	320	50
NIA-NOO	ACJJ4	AC	2m @ 0.71 g/t Au	100% Oxide	20	22	-55	320	30
			2m @ 0.35 g/t Au	100% Oxide	40	42			
			2m @ 0.30 g/t Au	100% Oxide	46	48			
NYA-NOU	AC995	AC	20m @ 0.60 g/t Au	100% Oxide	12	32	-55	320	50
NYA-NOU	AC995 AC996	AC	no significant intersections	100% Oxide	0	48	-55	320	48
NYA-NOU	AC990 AC997	AC	no significant intersections		0	50	-55	320	50
NYA-NOU	AC997 AC998	AC	no significant intersections		0	50	-55 -55	320	50
NYA-NOU	AC998 AC999	AC	2m @ 0.73 g/t Au	100% Oxide	28	30	-55	320	50
NYA-NOU	NORAB01	RAB	no significant intersections	100% Oxide	0	40	-55	325	40
NYA-NOU	NORAB01 NORAB02	RAB	no significant intersections		0	42	-55	325	42
NYA-NOU	NORAB02 NORAB03	RAB	no significant intersections		0	47	-55	325	47
NYA-NOU	NORAB04	RAB	no significant intersections		0	34	-55	325	34
NYA-NOU	NORAB05	RAB	no significant intersections		0	36	-55 -55	325	36
NYA-NOU	NORAB06	RAB	no significant intersections		0	42	-55	325	42
NYA-NOU	NORAB07	RAB	no significant intersections		0	38	-55	325	38
NYA-NOU	NORAB07	RAB	no significant intersections		0	16	-55	325	16
NYA-NOU	NORAB09	RAB	no significant intersections		0	33	-55 -55	325	33
NYA-NOU	NORAB10	RAB	4m @ 1.04 g/t Au		16	20	-55	325	33 37
NYA-NOU	NORAB10 NORAB11	RAB	4m @ 0.51 g/t Au		4	8	-55	325	33
NYA-NOU	NORAB11 NORAB12	RAB	no significant intersections		0	29	-55	325	29
NYA-NOU	NORAB13	RAB	4m @ 0.32 g/t Au		12	16	-55 -55	325	27
NYA-NOU	NORAB14	RAB	no significant intersections		0	36	-55 -55	325	36
NYA-NOU	NORAB15	RAB	no significant intersections		0	43	-55 -55	325	43
NYA-NOU	NORAB16	RAB	no significant intersections		0	36	-55 -55	325	36
	NORAB17	RAB	-		0	36	-55	325	36
NYA-NOU NYA-NOU	NORAB17 NORAB18	RAB	no significant intersections no significant intersections		0	33	-55 -55	325 325	38
NYA-NOU NYA-NOU	NORAB19	RAB	no significant intersections		0	33	-55 -55	325	33
NYA-NOU NYA-NOU	NORAB19 NORAB20	RAB	3m @ 0.60 g/t Au		6	33 9	-55 -55	325	38
NYA-NOU NYA-NOU	NORAB21	RAB	no significant intersections		0		-55 -55	325	33
NYA-NOU NYA-NOU		RAB	-		0	33 26	-55 -55		33 26
	NORAB22		no significant intersections					325	
NYA-NOU	NORAB23	RAB	no significant intersections		0	36 36	-55 ==	325	36 36
NYA-NOU	NORAB24	RAB	no significant intersections		0	36	-55	325	36

Location (Property)	Hole ID	Hole Type	Downhole Intersection	Intersection Material Type	Depth From (m)	Depth To (m)	Dip (°)	Azimuth (°)	Hole Length (m)
NYA-NOU	NORAB25	RAB	no significant intersections		0	34	-55	325	34
NYA-NOU	NORAB26	RAB	no significant intersections		0	30	-55	325	30
NYA-NOU	NORAB27	RAB	no significant intersections		0	34	-55	325	34
NYA-NOU	NORAB28	RAB	no significant intersections		0	30	-55	325	30
NYA-NOU	NORAB29	RAB	no significant intersections		0	32	-55	325	32
NYA-NOU	NORAB30	RAB	no significant intersections		0	34	-55	325	34
NYA-NOU	NORAB31	RAB	no significant intersections		0	42	-55	325	42
NYA-NOU	NORAB32	RAB	no significant intersections		0	35	-55	325	35
NYA-NOU	NORAB33	RAB	no significant intersections		0	42	-55	325	42
NYA-NOU	NORAB34	RAB	no significant intersections		0	42	-55	325	42
NYA-NOU	NORAB35	RAB	no significant intersections		0	52	-55	325	52
NYA-NOU	NORAB36	RAB	no significant intersections		0	51	-55	325	51
NYA-NOU	NORAB37	RAB	no significant intersections		0	44	-55	325	44
NYA-NOU	NORAB38	RAB	_		0	65	-55 -55	325	65
			no significant intersections		0	52			
NYA-NOU	NORAB39	RAB	no significant intersections				-55	325	52
NYA-NOU	NORAB40	RAB	no significant intersections		0	53	-55	325	53
NYA-NOU	NORAB41	RAB	no significant intersections		0	48	-55	325	48
NYA-NOU	NORAB42	RAB	no significant intersections		0	40	-55	325	40
NYA-NOU	NORAB43	RAB	no significant intersections		0	54	-55	325	54
NYA-NOU	NORAB44	RAB	no significant intersections		0	15	-55	325	15
NYA-NOU	NORAB45	RAB	no significant intersections		0	20	-55	325	20
NYA-NOU	NORAB46	RAB	no significant intersections		0	57	-55	325	57
NYA-NOU	NORAB47	RAB	no significant intersections		0	57	-55	325	57
NYA-NOU	NORAB48	RAB	no significant intersections		0	60	-55	325	60
NYA-NOU	NORAB49	RAB	no significant intersections		0	36	-55	325	36
NYA-NOU	NORAB50	RAB	no significant intersections		0	40	-55	325	40
NYA-NOU	NORAB51	RAB	no significant intersections		0	36	-55	325	36
NYA-NOU	NORAB52	RAB	no significant intersections		0	40	-55	325	40
NYA-NOU	NORAB53	RAB	no significant intersections		0	69	-55	325	69
NYA-NOU	NORAB54	RAB	no significant intersections		0	46	-55	325	46
NYA-NOU	NORAB55	RAB	no significant intersections		0	66	-55	325	66
NYA-NOU	NORAB56	RAB	no significant intersections		0	49	-55	325	49
NYA-NOU	NORAB57	RAB	no significant intersections		0	52	-55	325	52
NYA-NOU	NORAB58	RAB	no significant intersections		0	34	-55	325	34
NYA-NOU	NORAB59	RAB	4m @ 0.33 g/t Au		0	4	-55	325	37
NYA-NOU	NORAB60	RAB	no significant intersections		0	43	-55	325	43
NYA-NOU	NORAB61	RAB	no significant intersections		0	32	-55	325	32
NYA-NOU	NORAB62	RAB	no significant intersections		0	40	-55	325	40
NYA-NOU	NORAB63	RAB	no significant intersections		0	40	-55	325	40
NYA-NOU	NORAB64	RAB	no significant intersections		0	28	-55	325	28
NYA-NOU	NORAB65	RAB	no significant intersections		0	26	-55	325	26
NYA-NOU	NORAB66	RAB	no significant intersections		0	25	-55	325	25
NYA-NOU	NORAB67	RAB	no significant intersections		0	33	-55	325	33
NYA-NOU	NORAB68	RAB	no significant intersections		0	35	-55	325	35
NYA-NOU	NORAB69	RAB	no significant intersections		0	28	-55	325	28
NYA-NOU	NORAB70	RAB	no significant intersections		0	34	-55	325	34
NYA-NOU	NORAB71	RAB	no significant intersections		0	40	-55	325	40
NYA-NOU	NORAB72	RAB	no significant intersections		0	48	-55	325	48
NYA-NOU	NORAB72 NORAB73	RAB	no significant intersections		0	37	-55 -55	325	37
NYA-NOU	NORAB73	RAB	no significant intersections		0	38	-55	325	38
			•						
NYA-NOU	NORAB75	RAB	no significant intersections		0	27	-55	325	27

Location (Property)	Hole ID	Hole Type	Downhole Intersection	Intersection Material Type	Depth From (m)	Depth To (m)	Dip (°)	Azimuth (°)	Hole Length (m)
NYA-NOU	NORAB76	RAB	no significant intersections		0	34	-55	325	34
NYA-NOU	NORAB77	RAB	no significant intersections		0	32	-55	325	32
NYA-NOU	NORAB78	RAB	no significant intersections		0	37	-55	325	37
NYA-NOU	NORAB79	RAB	no significant intersections		0	26	-55	325	26
NYA-NOU	NORAB80	RAB	no significant intersections		0	27	-55	325	27
NYA-NOU	NORAB81	RAB	no significant intersections		0	30	-55	325	30
NYA-NOU	NORAB82	RAB	no significant intersections		0	37	-55	325	37
NYA-NOU	NORAB83	RAB	no significant intersections		0	36	-55	325	36
NYA-NOU	NORAB84	RAB	no significant intersections		0	30	-55	325	30
NYA-NOU	NYRAB01	RAB	4m @ 0.77 g/t Au		32	36	-55	310	48
NYA-NOU	NYRAB02	RAB	no significant intersections		0	44	-55	310	44
NYA-NOU	NYRAB03	RAB	no significant intersections		0	67	-55	310	67
NYA-NOU	NYRAB04	RAB	no significant intersections		0	30	-55	310	30
NYA-NOU	NYRAB05	RAB	no significant intersections		0	24	-55	310	24
NYA-NOU	NYRAB06	RAB	no significant intersections		0	24	-55	310	24
NYA-NOU	NYRAB07	RAB	no significant intersections		0	36	-55	310	36
NYA-NOU	NYRAB08	RAB	no significant intersections		0	37	-55	310	37
NYA-NOU	NYRAB09	RAB	no significant intersections		0	28	-55	310	28
NYA-NOU	NYRAB10	RAB	no significant intersections		0	41	-55	325	41
NYA-NOU	NYRAB11	RAB	no significant intersections		0	48	-55	325	48
NYA-NOU	NYRAB12	RAB	no significant intersections		0	43	-55	325	43
NYA-NOU	NYRAB13	RAB	no significant intersections		0	52	-55	325	52
NYA-NOU	NYRAB14	RAB	no significant intersections		0	37	-55 -55	325	37
NYA-NOU	NYRAB15	RAB	no significant intersections		0	70	-55	325	70
NYA-NOU	NYRAB16	RAB	4m @ 0.35 g/t Au		44	48	-55	325	68
NYA-NOU	NYRAB16	RAB	4m @ 0.32 g/t Au		52	56	-55	325	68
NYA-NOU	NYRAB17	RAB	5m @ 1.85 g/t Au		1	6	-55 -55	325	73
NYA-NOU	NYRAB18	RAB	no significant intersections		0	51	-55 -55	325	73 51
NYA-NOU	NYRAB19	RAB	no significant intersections		0	54	-55	325	54
NYA-NOU	NYRAB20	RAB	no significant intersections		0	30	-55 -55	325	30
NYA-NOU	NYRAB21		no significant intersections		0	50	-55 -55	325	50
NYA-NOU		RAB	5m @ 1.73 g/t Au						
NYA-NOU	NYRAB22 NYRAB23	RAB RAB	no significant intersections		30	35 52	-55 -55	325 325	40 52
NYA-NOU	NYRAB24	RAB	no significant intersections		0	39	-55 -55	325	39
NYA-NOU	NYRAB25	RAB	4m @ 0.93 g/t Au		0	4	-55	325	33
NYA-NOU	NYRAB26	RAB	no significant intersections		0	33	-55 -55	325	33
NYA-NOU		RC	no significant intersections		0	126	-55 -58	323	126
NYA-NOU	BF_01	RC	no significant intersections		0	120	-56 -59	320	120
	BF_02		J	1000/ Trans	9				
NYA-NOU	BF_03	RC	4m @ 2.86 g/t Au 6m @ 1.35 g/t Au	100% Trans		13	-56	325	119
			- J	100% Trans	24	30			
NIVA NOLL	DE 04	DC	7m @ 0.62 g/t Au	86% Trans / 14% Fresh	41	48		220	120
NYA-NOU	BF_04	RC	no significant intersections	4000/ Farab	0	120	-57	320	120
NYA-NOU	BF_05	RC	2m @ 0.54 g/t Au	100% Fresh	103	105	-58	316	156
NYA-NOU	BF_06	RC	17m @ 1.18 g/t Au	6% Oxide / 94% Trans	12	29	-56	309	126
AIN/A NIGH	DE 07	5.0	7m @ 0.41 g/t Au	100% Fresh	55	62		222	422
NYA-NOU	BF_07	RC	6m @ 1.08 g/t Au	100% Fresh	82	88	-57	320	120
NYA-NOU	BF_08	RC	13m @ 2.87 g/t Au	100% Trans	10	23	-55	319	120
			4m @ 10.59 g/t Au	25% Trans / 75% Fresh	30	34			46-
NYA-NOU	BF_09	RC	no significant intersections		0	120	-56	317	120
NYA-NOU	BF_10	RC	no significant intersections		0	120	-57	327	120
NYA-NOU	BF_11	RC	no significant intersections		0	72	-58	318	72

Location (Property)	Hole ID	Hole Type	Downhole Intersection	Intersection Material Type	Depth From (m)	Depth To (m)	Dip (°)	Azimuth (°)	Hole Length (m)
NYA-NOU	BF_12	RC	5m @ 1.61 g/t Au	100% Fresh	65	70	-57	317	126
NYA-NOU		RC	no significant intersections	100/0116311	0	126	-57	323	126
NYA-NOU	BF_13 BF_14	RC	no significant intersections		0	150	-57 -56	323	150
NYA-NOU	BF_14 BF_15	RC	6m @ 1.17 g/t Au	100% Oxide	10	16	-50 -57	325	120
NTA-NOO	pi _13	NC .	2m @ 0.41 g/t Au	100% Oxide	20	22	-57	323	120
NYA-NOU	BF_16	RC	no significant intersections	100% Oxide	0	120	-59	310	120
NYA-NOU	BF_17	RC	2m @ 0.42 g/t Au	100% Fresh	99	101	-57	318	120
NYA-NOU	BF_17 BF_18	RC	7m @ 6.86 g/t Au	100% Fresh	53	60	-57 -57	318	120
NTA-NOO	pi _10	NC .	2m @ 0.62 g/t Au	100% Fresh	78	80	-57	310	120
NYA-NOU	BF_19	RC	no significant intersections	100% (163)	0	66	-56	326	66
NYA-NOU	FRC778	RC	no significant intersections		0	100	-58	320	100
NYA-NOU	FRC779	RC	no significant intersections		0	100	-58 -57	320	100
NYA-NOU NYA-NOU			<u> </u>		0	100	-5 <i>7</i> -56		
	FRC780	RC	no significant intersections		0			320	100 100
NYA-NOU	FRC781	RC	no significant intersections	100% Frach		100	-56	320	
NYA-NOU	FRC782	RC	2m @ 0.87 g/t Au	100% Fresh	59	61	-57	320	100
NYA-NOU	FRC783	RC	no significant intersections	4000/ Fl-	0	100	-57	320	100
NYA-NOU	FRC784	RC	2m @ 0.43 g/t Au	100% Fresh	85	87	-57	320	102
NYA-NOU	FRC785	RC	2m @ 1.75 g/t Au	100% Oxide	31	33	-57	320	100
NYA-NOU	FRC786	RC	no significant intersections		0	100	-57	320	100
NYA-NOU	FRC787	RC	no significant intersections		0	100	-56	320	100
NYA-NOU	FRC788	RC	no significant intersections		0	100	-57	320	100
NYA-NOU	FRC789	RC	7m @ 0.46 g/t Au	100% Oxide	44	51	-56	320	100
			4m @ 1.20 g/t Au	100% Fresh	83	87			
NYA-NOU	FRC790	RC	no significant intersections		0	100	-57	320	100
NYA-NOU	FRC791	RC	5m @ 0.82 g/t Au	100% Oxide	13	18	-56	140	102
			2m @ 0.95 g/t Au	100% Oxide	30	32			
NYA-NOU	FRC791	RC	11m @ 0.73 g/t Au	45% Oxide / 55% Trans	41	52	-56	140	102
NYA-NOU	FRC792	RC	no significant intersections		0	120	-58	140	120
NYA-NOU	FRC793	RC	no significant intersections		0	100	-57	320	100
NYA-NOU	FRC794	RC	no significant intersections		0	100	-56	320	100
NYA-NOU	FRC795	RC	2m @ 1.20 g/t Au	100% Oxide	17	19	-56	320	100
NYA-NOU	FRC795	RC	3m @ 1.35 g/t Au	100% Oxide	31	34	-56	320	100
NYA-NOU	FRC796	RC	no significant intersections		0	102	-57	320	102
NYA-NOU	FRC797	RC	no significant intersections		0	100	-57	320	100
NYA-NOU	FRC798	RC	2m @ 0.56 g/t Au	100% Fresh	90	92	-56	320	100
NYA-NOU	FRC799	RC	7m @ 1.66 g/t Au	100% Oxide	19	26	-56	320	100
			15m @ 1.80 g/t Au	100% Fresh	85	100			
NYA-NOU	FRC800	RC	no significant intersections		0	105	-57	320	105
NYA-NOU	FRC801	RC	4m @ 2.94 g/t Au	100% Fresh	90	94	-56	320	100
NYA-NOU	FRC802	RC	3m @ 8.94 g/t Au	100% Fresh	105	108	-57	320	108
KAPOGOUAN	BDC15-001	DDH	no significant intersections		0	180	-52	315	180
KAPOGOUAN	BRC15-035	RC	no significant intersections		0	150	-50	315	150
KAPOGOUAN	BRC15-036	RC	no significant intersections		0	150	-50	315	150
KAPOGOUAN	BRC15-037	RC	no significant intersections		0	150	-50	315	150
KAPOGOUAN	BRC15-038	RC	no significant intersections		0	150	-50	315	150
KAPOGOUAN	BRC15-039	RC	no significant intersections		0	150	-50	315	150
KAPOGOUAN	BRC15-040	RC	no significant intersections		0	150	-51	315	150
KAPOGOUAN	BRC15-041	RC	no significant intersections		0	150	-50	315	150
KAPOGOUAN	BRC15-042	RC	3m @ 4.37 g/t Au	100% Fresh	39	42	-50	315	150
KAPOGOUAN	BRC15-043	RC	no significant intersections		0	150	-48	315	150
KAPOGOUAN	BRC15-044	RC	no significant intersections		0	150	-51	315	150

Location (Property)	Hole ID	Hole Type	Downhole Intersection	Intersection Material Type	Depth From (m)	Depth To (m)	Dip (°)	Azimuth (°)	Hole Length (m)
KAPOGOUAN	BRC15-045	RC	no significant intersections		0	150	-51	315	150
KAPOGOUAN	BRC15-046	RC	3m @ 1.01 g/t Au	100% Fresh	148	151	-51	315	153
KAPOGOUAN	BRC15-047	RC	3m @ 1.73 g/t Au	100% Fresh	68	71	-49	315	150
KAPOGOUAN	BRC15-049	RC	no significant intersections		0	159	-51	315	159
KAPOGOUAN	BRC15-050	RC	no significant intersections		0	150	-49	315	150
KAPOGOUAN	BRC15-051	RC	no significant intersections		0	150	-51	315	150
KAPOGOUAN	BRC15-052	RC	no significant intersections		0	150	-50	315	150
KAPOGOUAN	BRC15-053	RC	3m @ 0.6 g/t Au	100% Fresh	50	53	-51	315	150
			4m @ 0.36 g/t Au	100% Fresh	95	99			
KAPOGOUAN	BRC15-054	RC	4m @ 0.23 g/t Au	100% Fresh	139	143	-50	315	150
KAPOGOUAN	BRC15-055	RC	no significant intersections		0	150	-50	315	150
KAPOGOUAN	BRC15-056	RC	no significant intersections		0	153	-50	315	153
KAPOGOUAN	BRC15-057	RC	no significant intersections		0	150	-50	315	150
KAPOGOUAN	BRC15-058	RC	no significant intersections		0	150	-50	315	150
KAPOGOUAN	BRC15-059	RC	no significant intersections		0	150	-51	315	150
KAPOGOUAN	BRC15-060	RC	no significant intersections		0	150	-51	315	150
KAPOGOUAN	BRC15-061	RC	3m @ 0.29 g/t Au	100% Fresh	123	126	-50	315	150
KAPOGOUAN	BRC15-062	RC	3m @ 0.41 g/t Au	100% Trans	24	27	-50	315	150
KAPOGOUAN	BRC15-063	RC	no significant intersections		0	150	-50	315	150
KAPOGOUAN	BRC15-064	RC	3m @ 0.53 g/t Au	100% Oxide	5	8	-50	315	150
KAPOGOUAN	BRC15-065	RC	no significant intersections		0	150	-51	315	150
KAPOGOUAN	BRC15-066	RC	no significant intersections		0	150	-50	315	150
KAPOGOUAN	BRC15-067	RC	no significant intersections		0	150	-50	315	150
KAPOGOUAN	BRC15-068	RC	no significant intersections		0	150	-50	315	150
KAPOGOUAN	BRC15-069	RC	no significant intersections		0	150	-50	315	150
KAPOGOUAN	BRC15-070	RC	no significant intersections		0	150	-51	315	150
KAPOGOUAN	BRC15-173	RC	no significant intersections		0	150	-51	0	150
KAPOGOUAN	BRC15-174	RC	no significant intersections		0	150	-50	0	150
KAPOGOUAN	BRC15-175	RC	7m @ 0.33 g/t Au	100% Fresh	84	91	-50	0	150
KAPOGOUAN	BRC15-176	RC	no significant intersections		0	150	-51	0	150
KAPOGOUAN	BRC15-177	RC	no significant intersections		0	150	-50	0	150
KAPOGOUAN	BRC15-178	RC	no significant intersections		0	150	-51	0	150
KONGOROBA	BRC15-098	RC	no significant intersections		0	150	-52	315	150
KONGOROBA	BRC15-099	RC	no significant intersections		0	150	-53	315	150
KONGOROBA	BRC15-100	RC	no significant intersections		0	150	-52	315	150
KONGOROBA	BRC15-101	RC	no significant intersections		0	150	-52	315	150
KONGOROBA	BRC15-102	RC	no significant intersections		0	150	-52	315	150
KONGOROBA	BRC15-103	RC	no significant intersections		0	150	-53	315	150
KONGOROBA	BRC15-104	RC	no significant intersections		0	150	-51	315	150
KONGOROBA	BRC15-105	RC	no significant intersections		0	150	-51	315	150
KONGOROBA	BRC15-106	RC	no significant intersections		0	150	-53	315	150
KONGOROBA	BRC15-107	RC	no significant intersections		0	150	-52	315	150
KONGOROBA	BRC15-108	RC	no significant intersections		0	150	-51	315	150
KONGOROBA	BRC15-109	RC	no significant intersections		0	150	-50	315	150
KONGOROBA	BRC15-110	RC	3m @ 0.35 g/t Au	100% Fresh	60	63	-53	315	150
KONGOROBA	BRC15-111	RC	no significant intersections		0	175	-50	315	175
KONGOROBA	BRC15-112	RC	no significant intersections		0	150	-52	315	150
KONGOROBA	BRC15-113	RC	no significant intersections		0	150	-51	315	150
KONGOROBA	BRC15-114	RC	no significant intersections		0	150	-52	315	150
KONGOROBA	BRC15-115	RC	no significant intersections		0	150	-52	315	150
KONGOROBA	BRC15-116	RC	no significant intersections		0	150	-51	315	150

Location (Property)	Hole ID	Hole Type	Downhole Intersection	Intersection Material Type	Depth From (m)	Depth To (m)	Dip (°)	Azimuth (°)	Hole Length (m)
KONCORORA	DDC45 447	200			0	450	5 4	245	450
KONGOROBA	BRC15-117	RC	no significant intersections		0	150	-51	315	150
KONGOROBA	BRC15-118	RC	no significant intersections		0	150	-51	315	150
KONGOROBA	BRC15-119	RC	no significant intersections		0	150	-51	315	150
KONGOROBA	BRC15-120	RC	no significant intersections		0	150	-51	315	150
NOUMOUSSO	BRC15-179	RC	no significant intersections		0	150	-50	0	150
NOUMOUSSO	BRC15-180	RC	no significant intersections		0	153	-50	0	153
NOUMOUSSO	BRC15-181	RC	no significant intersections		0	179	-49	0	179
NOUMOUSSO	BRC15-182	RC	no significant intersections		0	153	-49	0	153
NOUMOUSSO	BRC15-183	RC	no significant intersections		0	150	-50	0	150
NOUMOUSSO	BRC15-184	RC	no significant intersections		0	150	-50	0	150
NOUMOUSSO	BRC15-185	RC	no significant intersections		0	150	-50	0	150
NOUMOUSSO	BRC15-186	RC	no significant intersections		0	150	-50	315	150
NOUMOUSSO	BRC15-187	RC	no significant intersections		0	150	-50	315	150
NOUMOUSSO	BRC15-188	RC	no significant intersections		0	150	-50	315	150
NOUMOUSSO	BRC15-189	RC	no significant intersections		0	150	-50	315	150
NOUMOUSSO	BRC15-190	RC	no significant intersections		0	150	-49	315	150
NOUMOUSSO	BRC15-191	RC	3m @ 0.87 g/t Au	100% Oxide	5	8	-48	315	150